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Abstract
Some scholars dismiss the distinction between basic and applied science as passé, yet substantive 
assumptions about this boundary remain obdurate in research policy, popular rhetoric, the 
sociology and philosophy of science, and, indeed, at the level of bench practice. In this article, I 
draw on a multiple ontology framework to provide a more stable affirmation of a constructivist 
position in science and technology studies that cannot be reduced to a matter of competing 
perspectives on a single reality. The analysis is grounded in ethnographic research in the border 
zone of Artificial Intelligence science. I translate in-situ moments in which members of neighboring 
but differently situated labs engage in three distinct repertoires that render the reality of basic 
and applied science: partitioning, flipping, and collapsing. While the essences of scientific objects 
are nowhere to be found, the boundary between basic and applied is neither illusion nor mere 
propaganda. Instead, distinctions among scientific knowledge are made real as a matter of course.
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The distinction between basic and applied science is often invoked casually, as if everyone is 
drawing upon the same criteria. Yet, voluminous scholarship contains little consensus as to 
what, if anything, this distinction maps. How can we, as analysts of scientific knowledge 
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production, reconcile the multiple ways of talking about the boundary between basic and 
applied science? Given the increasingly elaborate entanglements between industry and aca-
demia that have developed over the past few decades (Etzkowitz et al., 2000; Rhoten and 
Powell, 2010; Shore and McLauchlan, 2012; Vallas and Kleinman, 2008), it is worthwhile to 
raise again the old question of how this boundary is drawn.

It will prove helpful to simplify the distinction between basic and applied science to 
two main ways of apprehending what in that distinction is real: one view sees the distinc-
tion in the substance of knowledge itself; another treats it as an artifact of some exterior 
and/or a co-constitutive condition.1 I argue that while it is a clear misrecognition to 
reduce the distinction to a set of invariant characteristics, it is also a category mistake to 
decide that scientific objects are artifice, illusion, language game, pure discourse, or 
mere propaganda (for a compatible critique, see Latour, 1993 [1991]: 5–8). Recent for-
mulations of relational theory (Mol, 2002; Strathern, 2005; see also Emirbayer and 
Mische, 1998; Sewell, 1992; Vallas and Cummins, 2014) and multiple ontology (see the 
June 2013 issue of this journal), together with close attention to the demarcation of sym-
bolic boundaries (Calvert, 2006; Gieryn, 1983, 1999; see also Abbott, 2001; Lamont, 
2009), provide ample resources that can be brought to bear on this issue.

Research scientists produce basic and applied research in multiple and sometimes 
contradictory ways. What is considered basic in one scenario might be considered 
applied in another (which can give the distinction the impression of being mere illusion 
or rhetoric). The boundary can be collapsed altogether (suggesting it is passé or even 
never existed). I argue that no single form of the boundary is true or correct in any singu-
lar, trans-locational way. Similar to the multiple versions of atherosclerosis, ostensibly 
the same disease, in a single hospital (Mol, 2002), the boundary between basic and 
applied knowledge multiplies in everyday contexts. While this position affirms the idea 
that the boundary is constructed in the sense of having been enacted by a set of activities 
and rhetoric, multiple ontology shifts analytic attention away from competing perspec-
tives and toward the phenomenological performance of contrasting realities (Schütz, 
1945). I focus on how scientists make multiple versions of basic and applied science 
cohere rather than deducing what this boundary really is, or should be, in some ultimate 
way. A multiple ontology framework moves analysis beyond the representationalism that 
muddles the research policy debates over university–industry entanglements.

It is for this same reason, however, that I do not begin with a formal definition of the 
most important characteristics of basic and applied knowledge. Instead, I show how the 
boundary is performed. I find that three repertoires2 render distinct versions of the basic–
applied boundary: partitioning, flipping, and collapsing. Basic and applied sciences are 
made substantive, artifactual, and indeed, both or neither, in practical action. Academic 
Artificial Intelligence (AI) provides an opportune empirical case, since it is an area of 
research that has long straddled the overlapping borders of science and technical applica-
tion (Crevier, 1993; Edwards, 1996: 294–302; for a proto-history, see Galison, 1996). AI 
originated as an academic discipline with contradictory visions that, since its founding 
moment, continue to influence how its practitioners invoke the difference between basic 
and applied science. On one hand, AI was inspired by universalistic inquiry into the 
nature of human-level intelligence. On the other hand, it was grounded in the practicali-
ties of symbolic programming and computer engineering. This tension is not a necessary 
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or natural aspect of computer science, per se, but it is a deep source of strain that is highly 
unlikely to be resolved within university labs devoted to AI. That tension certainly can-
not be resolved in this article. Instead, I explain how members of two academic AI labs 
actively manage this tension between knowledge-for-scientific-understanding and tech-
nologies-for-use. In this way, I demonstrate that the basic and applied sciences do not 
reside in essences of scientific objects, but that certain aspects of technoscience are made 
more substantial than others.

Getting clear on or steering clear of the basic and applied 
boundary
In his 1945 report to President Truman on the state of post-World War II (WWII) science, 
Vannevar Bush, Director of the US Office of Scientific Research and Development, 
argued that ‘pure’ research is the fundamental driver of new technologies: ‘New products 
and new processes … are founded on new principles and new conceptions … painstak-
ingly developed by research in the purest realms of science’ (p. 14). US university 
administrators, scientists, and policy allies reified this relationship between basic and 
applied science through a distribution of federal research dollars. A similar boundary is 
found in the rhetoric of English educational reformer John Tyndall:

Let the self-styled practical man look to those from the fecundity of whose thought he, and 
thousands like him, have sprung into existence. Were they inspired in their first inquiries by the 
calculations of utility? Not one of the them. (quoted in Gieryn, 1999: 54)

Tyndall’s advocacy, like Bush’s, turned on the notion that the development of path- 
breaking concepts and principles is necessarily distinct from and drives research-for-use.

Over the past three decades, policymakers and university administrators in the United 
States and elsewhere have sought to link academic research and economic growth more 
directly (Gieger and Sá, 2009; Popp Berman, 2012; Rhoten and Powell, 2010). This 
reorientation has created formal and informal pressures on academics to produce knowl-
edge products that have industrial relevance, are ‘translational’, are patent-worthy, span 
disciplines, or can be moved quickly from ‘bench-to-bedside’ (Hoffman, 2011; Moore et 
al., 2011; Slaughter and Rhoades, 2004). A good deal of management scholarship identi-
fies conditions that ease the transfer of academic knowledge to industry (e.g. Rhoten and 
Powell, 2007; Thursby and Thursby, 2010). Critical scholars, in contrast, view this trend 
as a worrisome decline in the importance of basic science (e.g. Krimsky, 2003). 
Voluminous empirical research uses loose measures of scientific productivity to assess 
whether applied work has pushed out basic research (e.g. Van Looy et al., 2006). Across 
the practical, policy, and scholarly work in research policy, varied as it may be, is an 
underlying assumption that the difference between basic and applied science is ‘within’ 
knowledge itself.

This substantive conceptualization of the boundary between basic and applied can 
also be found in the philosophy and sociology of science, where we find periodic attempts 
to discern how substantive differences map onto how generative a piece of scientific 
research is (Stinchcombe, 2001), onto disciplinary-level variations (Frank and Gabler, 
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2006), onto modes of inquiry (Sintonen, 1990), or onto multi-dimensional layering of 
such variables (Lomnitz and Cházaro, 1999). Consider how Stinchcombe (2001) turns 
the dichotomy into a continuous measure of generativity:

Fundamental notions in science play a central role because they generate solutions to a wide 
variety of problems … structural members with the right size, materials, and angle to the force 
of gravity are principal determinants of structural soundness. The size, materials, and angle of 
electrical conduit, on the other hand, make very little difference to anything else. (p. 160)

In this architectural metaphor, the weight-bearing bits of knowledge are basic because 
additional knowledge depends upon their foundation. Other analysts offer new classifi-
catory schemes (Gibbons et al., 1994; Stokes, 1997) or pose the shift as a rise in a hybrid 
order (Lam, 2010; Murray, 2010; Owen-Smith, 2003). Whether conceived as binary, 
continuous, or hybrid, however, the boundary between basic and applied science is still 
treated as a substantive essence.

Science and Technology Studies (STS) scholars in the constructivist tradition, in con-
trast, have conceptualized the basic–applied boundary as a historical and rhetorical pro-
cess (Latour, 1987; Shapin, 2008; for a genealogy, see Calvert, 2006: esp. 201–203). 
Gieryn (1983) pointed toward this artifactual position in his analysis of scientific 
boundaries:

Demarcation is as much a practical problem for scientists as an analytical problem for 
sociologists and philosophers. Descriptions of science as distinctively truthful, useful, objective 
or rational may best be analyzed as ideologies: incomplete and ambiguous images of science 
nevertheless useful for scientists’ pursuit of authority and material resources. (pp. 792–793)

While the focus on scientific boundaries has been highly productive, the emphasis on 
how the line separating basic and applied sciences has varied historically has created a 
tendency to dismiss the boundary as passé (e.g. Edgerton, 2004; Forman, 2007; less 
problematically, Sturdy, 2007). Edgerton (2004) provides the quintessential example of 
this, although arguments like Forman’s (2007), that science (writ large) became sub-
sumed under technology around 1980 rest on similarly shaky ground. Edgerton (2004) 
argues that the distinction was never more than academic propaganda aimed at keeping 
federal dollars flowing:

‘The linear model’ is usually taken to be something like the following: ‘basic’ or ‘fundamental’, 
‘pure’ or ‘undirected’, scientific research in the main source of technical innovation the process 
of innovation is a sequential one, by which discoveries arising in such research are developed 
in a sequence through applied research, development and so on, to production … ‘the linear 
model’ not only did not exist, but it could not exist as an elaborated model … It is always, 
however, something that was surpassed, criticized, to be moved beyond … ‘The linear model’ 
is a term of art without a history. (pp. 32–34)

Here, there is no substance to separate basic and applied research at all. Not now or ever.
The position that the basic–applied boundary has only ever served as propaganda or 

‘art’ may seem to resonate with a central tenet of constructivist STS, namely that science 
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does not reveal timeless truths but that facticity is produced within assemblages and 
networks (Bijker, 1995; Collins, 1985; Latour, 1987; Pinch and Bijker, 1987). It echoes 
the metaphysics of pragmatism too, in which ontology is located not in the object but in 
its use (Dewey, 1922). However, by suggesting that the boundary ‘did not exist’, ‘could 
not exist’, and is a ‘term of art without a history’, the claim subtly glides from process to 
a static ontology of reflection.

Multiple ontology is useful for pushing STS past this trap. The ontological turn in 
STS is compatible with the development of relational theory more generally (e.g. 
Alexander, 1982; Emirbayer and Mische, 1998; Vallas and Cummins, 2014). This work 
focuses on how scientific objects, boundaries, and things more generally are coordinated 
in such a way that they are made politically, professionally, and very often personally 
important within particular webs of practice. A relational approach insists that what is 
real must be ‘built up’ into categorical distinctions (Blumer, 1969), yet their coordination 
suggests that the real might always be otherwise. As Latour (1987) argues, this is an 
accomplishment to follow, not decide.

The case of AI as a border zone
Academic AI straddles a research border zone.3 Since its inception as a professional field 
in the mid-20th century, it has been a science of sentience caught between the crosscur-
rents of autotelic knowledge and knowledge for an externalized purpose (McCarthy et al., 
1955). The abstract question ‘What is intelligence?’ must concede to the practicalities of 
computer code. As such, AI science rests on a double-layered ambiguity. First, there is no 
consensus over the nature of intelligence, cognition, decision-making, or analogical rea-
soning. Second, there is no consensus over how to reproduce this vague referent in 
machinery. Entrenched within this double ambiguity, AI scientists forge ahead with local 
bets. Open-ended questions about human-level reasoning are transformed into something 
that peers might accept as good enough, such as, ‘How can we get this computer program 
to recognize a drawing of a wheelbarrow if we draw it in two slightly different ways?’ AI 
science spans this unresolvable but fecund border zone. As Alfred North Whitehead 
(1938) might have formulated it, the assumptions embedded in an AI technology are 
‘always degenerating into philosophic generality’. Ambiguity lingers ‘just on the edge of 
consciousness’ (p. 70), bracketed by concessions to precision but never eliminated.

I observed two academic AI labs at a private research university in the American 
Midwest. Both are part of the same Department of Computer Science in a top-ranked 
research university. The university is not explicitly technology-driven like MIT or 
Carnegie Mellon, but recently placed near the top of the annual rankings of US public 
and private universities by royalty income as measured by the Association of University 
Technology Managers. The Department is divided into several semi-autonomous 
research groups, two of which identify as AI labs. Lab spaces are separated from depart-
ment spaces, although they are located in the same building. This separation provides a 
measure of privacy, enabling members to draw cross-lab comparisons without offending 
their neighbors with an unflattering evaluation. Each lab has an operating budget subsi-
dized by the department as well as by external grants. Student committees are assigned 
according to lab membership, with a lab head serving as chair.

 by guest on April 16, 2015sss.sagepub.comDownloaded from 

http://sss.sagepub.com/


Hoffman 247

Three types of data comprise the empirical reportage: observational, interview, and 
textual. All three are mobilized toward a holist description oriented to analytic induc-
tion (Geertz, 1973; Marcus, 1986). I conducted observations over 3 years, between 
2004 and 2007, and I remain in occasional contact with both labs. I attended and audio-
recorded over 200 lab-wide and/or project meetings, along with system demos and 
informal conversations. I was actively involved in project meetings and also read 
drafts of lab papers to offer grammatical or clarification advice. My relative technical 
incompetence enabled me to ask a lot of simple questions that an experienced AI prac-
titioner might consider embarrassingly rudimentary. After about 1 year of fieldwork, I 
developed ‘interactional expertise’ (Collins and Evans, 2002) within the AI subfields 
of the two labs – a level of expertise sufficient to understand the basic assumptions, 
algorithms, and formalisms embedded in lab systems and to be conversant on the 
broader field. Field notes comprise a synthesis of my daily logs of lab activities and 
audio recordings of conversations and events. I find audio recording indispensible to 
my own recall, which has all the typical fallibilities of the human species (Lehrer, 
2011) and ethnographers (Fine, 1993). Observations are rendered in the past tense; 
both labs, however, remain active.

I also conducted in-depth interviews with all members of the two labs. I used inter-
view data to help triangulate ethnographic observations, asking individual members to 
reflect on their experiences, occurrences, and viewpoints. Interviews were open-ended, 
although I used a guide to cover issues such as professional history, description of 
research trajectory, broader professional networks, how interviewees evaluated good AI 
research, and the appropriate boundary between basic and applied research. Interviews 
lasted anywhere from 1 to 4 hours, often conducted over several days. I conducted fol-
low-up interviews with all lab members in my third year of fieldwork. I also collected 
textual data, the corpus of which consists of over a thousand pages of lab research papers 
(drafts and published work), grant proposals, website material, memos, email exchanges, 
instant messaging (IM) chats, and internal Wiki board posts.

The data presented here focus on in-situ moments in which the basic–applied bound-
ary was raised during observations, interviews, or in text. I was much more interested 
in the ways the boundary got deployed in everyday sensemaking than in artificially 
imposing my own categorization scheme, and so here I emphasize moments in which 
the boundary arose spontaneously, rather than in response to a direct line of questions. 
This also means, however, that I present a fairly broad range of evaluative talk about 
science, technology, and AI. Understandings of the basic–applied boundary were very 
often mingled with other loosely connected distinctions, such as theory and use, aca-
demic and industry/societal, or science and technology. I have not stripped away these 
interconnections in an attempt to untangle these untidy distinctions. Terminology like 
‘real AI’ and ‘real science’ was often used interchangeably with basic and applied, as 
noted below. I highlight these moments as examples of ontological groundings. Since I 
was tuned to this theme throughout the data collection, I frequently pre-coded data for 
explicit or implicit definitions of what AI science is or ought to be. After transcription 
and writing out notes, I used two master codes: scientific demarcation (what is or is not 
science) and scientific identity (discussion of lab or individual identity), both broadly 
construed. I then derived inductive sub-codes that included basic/applied, real science, 
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real AI, good/bad science, theory, empirical, data, application, users, comparisons to 
other labs, and internal/external.

The Deep Reasoning Group (hereafter, DRG)4 is a lab working on computers that 
reason with analogy. Its research is based within the AI subfields of knowledge represen-
tation and qualitative reasoning. The group consists of a faculty lab head, Derek, two 
full-time research assistants (one with a PhD and the other an MA), and between 15 and 
20 doctoral students. The DRG received the majority of its funding from federal govern-
ment agencies such as the Defense Advanced Research Projects Agency (DARPA), the 
Office of Naval Research (ONR), the National Science Foundation (NSF), and the US 
Department of Homeland Security (DHS). Derek maintained thick ties to research scien-
tists working at these agencies, other researchers in the fields of cognitive psychology 
and AI, and with military commanders.

The Clever Minds Lab (hereafter, CML) focused on AI for smart information search, 
retrieval, and processing. The lab consists of two faculty heads, Charles and Cliff, and 
10–15 doctoral graduate students. The lab heads were trained primarily in the AI subfield 
of case-based reasoning (CBR), which is among the most commercially oriented areas of 
contemporary AI. CBR was a kind of successor to expert systems technologies that had, 
by the late 1980s, largely fallen out of favor in academia and industry (more on this his-
tory below). The CML maintains relations with communication technology firms, con-
sumer product and advertising firms, the arts and entertainment industry, venture 
capitalists, and city government.

Locating ‘real science’ in academic AI
It was crucially important to members of the DRG and CML to produce ‘real science’. 
Interestingly, each lab’s ontological grounding for their style of AI invalidates their 
neighbor’s, yet on they go enacting their separate realities just steps away from one 
another. In this section I characterize their contrasting positions, both of which hinge on 
different renderings of ‘real AI’. I will begin, however, with some institutional history.

In the 1980s, expert system technologies were at the center of the most volatile 
boom, bust, and gradual recovery cycles in the history of AI (see Collins, 1990; Crevier, 
1993: 197–216; Edwards, 1996: 294–295). Crevier (1993) notes that expert systems 
ushered in the first decade in which ‘AI stopped being an academic curiosity’ (p. 197). 
Well-known and widely reported examples of expert systems included technologies for 
medical diagnosis, large-scale industrial production, meteorology, and even the geo-
logical location of molybdenum, an ingredient in steel alloys. By the early 1980s, the 
production of these systems had solidified into a typical form. An AI researcher or team 
would either solicit or intuit the working knowledge of professional experts and then 
attempt to program that expertise into a ‘knowledge base’ of elaborate decision trees. 
The resulting system, it was hoped, could then assist or possibly replace the human 
expert. Expert systems attracted considerable industry attention based on their promise 
of routinizing heretofore non-routine tasks, therefore lowering personnel and training 
costs. Large corporations such as Boeing, Campbell’s Soup, General Electric, and many 
others invested heavily. Some companies, such as XEROX, founded internal AI groups. 
Following in the path forged by entrepreneurial scientists in the biomedical sciences 
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(Shapin, 2008: 222–229), a number of leading AI scientists founded their own private 
ventures. This included high-profile faculty at leading AI labs such as Carnegie Mellon, 
MIT, and Yale.

Expert systems, however, largely failed on their promise to scale-up. By the late 
1980s, many of these systems exhibited significant bugs, blind spots, and other prob-
lems. Critics gained attention in the academic, industrial, and popular press, many sug-
gesting that expert systems could only automate the most machine-like aspects of an 
expert’s task. Expert systems struggled to capture experts’ tacit and tactile knowledge as 
well as with problems with the regression of codified rules (see Collins, 1990: 78–105). 
By the early 1990s, industry investment in expert systems had shrunk dramatically. 
Historians refer to the subsequent period as an ‘AI Winter’. It is important to note that 
expert systems were never unanimously embraced within academic AI. A number of 
prominent AI scientists considered them to be a distraction from the more serious busi-
ness of understanding intelligence from a more experimental and cognitivist idiom. 
Nevertheless, the amount of industry money available for their proliferation maintained, 
for a time at least, their high profile within the field.

A key area of AI to thaw from this winter was CBR, which involves the development 
of general heuristics, analogies, and representations across similar tasks that can be used 
toward the accomplishment of a current task. Many of the common application domains 
of CBR research (e.g. industrial production, international diplomacy, fine cooking) are 
similar to those used in expert systems. However, CBR techniques are considerably less 
intensive on the knowledge entry side. They rely on an overall ‘script’ of a task that can 
change details as necessary, rather than codified expertise (the formative reports on this 
reconceptualization are Minsky, 1974; Schank and Abelson, 1975). As such, they tend to 
be cheaper and easier to build than expert systems since researchers with superficial 
knowledge can intuit much of the overall task script. Although CBR never produced the 
same level of industry excitement as expert systems, in part due to more modest goals, 
CBR researchers have parlayed some of the industry connections established during the 
height of expert systems AI. There remains, however, an ongoing debate within aca-
demic AI over whether CBR systems produce scientific knowledge at all.

DRG staff researcher Donald’s desire to create ‘real AI’ is indicative of this relegation 
of both expert systems and CBR to technical gadgetry. After completing his dissertation 
in the early 1990s, Donald began his career at an industry lab that contracts with various 
companies to build task-specific expert systems and CBR. Initially he enjoyed the expo-
sure to new task environments. During an interview, Donald noted that the work involved 
‘tangible, real world results’. However, ‘it was a good experience but it wasn’t research. 
That’s really where my heart is and what I wanted to be doing’. The industry research 
imposed narrow conceptual constraints and relied on well-worn techniques:

This was really not AI. It was AI-lite [LAUGHS] … this was the nineties and what happened is 
the economy started to boom so there was a lot of money for doing things that weren’t really 
AI. It sucked a lot of people away, including me.

In addition, Donald recalled how an instructional team at a contracting company once 
took credit for his research team’s design work when promoting a tool to their clients, 
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which seemed unfair. Donald’s eventual move back to academia owed much to his con-
viction that university research has a more meritocratic reward process for those who 
develop good ideas. It is also, for Donald, where most of the real AI science gets done.

In our interviews and casual conversations, Donald never set out a clear or settled 
definition of what he meant by either ‘basic science’ or ‘real AI’. He used these terms 
interchangeably but both were in contrast to his research experience within industry. He 
found the latter to be too narrowly focused on profitability and/or utility, not how intel-
ligence operates. Donald’s first move back to what he referred to as ‘real science’ was to 
join a DARPA-funded project: ‘I jumped at [a DARPA project] because it was a chance 
to get back more into real AI … I worked on a grant for Mixed Initiative Planning for the 
Air Force’. However, new versions of the basic and applied boundary kept surfacing at 
DARPA, which Donald felt shifted with the ‘revolving door of personnel’ at the funding 
agency. Donald struggled to align his research with the funding agency’s constantly 
moving line between ‘out-of-the-box’ research and ‘field deliverables’:

There was a lot of interest in the military but DARPA was waffling on how applied they wanted 
to be. DARPA has this problem. They continue to go back and forth between being the civilian 
research agency and the defense with a capital D research agency. On the one hand, they want 
things that’ll be really easy to sell to the military because that’s how they’re getting their 
funding. On the other hand they want things that are out of the box and wild. Blue sky stuff. 
Trying to find the balance between those two is very hard.

Donald felt, and remains convinced, that his Air Force project was discovery-based 
research and was therefore quite ‘basic’. He was unable to convince DARPA reviewers, 
however, and it was defunded for being too applied. Nevertheless, a practical effect was 
to convince his old friend, DRG lab head Derek, to hire him as a staff researcher. During 
a DRG lab meeting, Donald extolled the virtues of his new academic lab by comparing 
it directly to their neighbor, the CML: ‘We are the kind of place that does science rather 
than build applications’ (field notes).5

For Donald, real AI involves the development of frontier techniques rather than a 
tight execution of well-understood procedures. Producing real science had to do with 
the knowledge produced and its social organization. That is, real AI research is linked 
to an economy of authority that attributes credit to the design of a path-breaking tech-
nology rather than a technology’s immediate utility. Credit should also go to the design 
team, not individuals conveniently positioned within buyer–seller relationship. Note, 
however, that Donald’s desire to return to what he considers basic science involved a 
series of nested boundaries. He did not view the systems he built for an industry lab as 
‘real AI’ and preferred the work being funded by DARPA. However, DARPA ‘pulled 
the plug’ on his Mixed Initiative project based on a different version of the boundary. 
Whether or not Donald’s project was basic or applied in some absolute sense is largely 
beside the point. He was unable to produce a research project that DARPA was willing 
to place into their basic research category. At the same time, the boundary cannot be 
reduced to mere illusion, propaganda, or a figment of imagination. The ‘ontic activity’ 
around Donald’s research had material and symbolic consequences. ‘Real AI’ and its 
opposite, in this case Donald’s Air Force project and his industry work, respectively, 
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were situated within a historical context and a particular configuration of contempo-
rary institutional entanglements.

In contrast to Donald’s position, the head of the CML, Charles, considered CBR an 
entirely appropriate academic successor to the inroads made by expert system’s foray 
into industry relevance. Charles worried that academic AI became what he referred to as 
‘hallucinatory’ once it was removed from ‘real-world’ contexts of technology use. 
Charles and CML research were animated by the idea that university–industry entangle-
ments improve both the impact and fundamental insights of AI science. Here, the main 
impediment to doing ‘real AI’ was not the narrow utilitarianism or profit motive of indus-
try, but the insular pursuit of canonical theory that has little relevance beyond academic 
specialists. Charles frequently complained that if an AI system is built for usages beyond 
its academic home, it is too often dismissed as applied and therefore ‘unscientific’. He 
considered it his main professional goal to develop alternative forms of scientific prac-
tice, design, and social organization that reorganize and perhaps even explode what he 
saw as the imbalance favoring basic over applied knowledge in university research.

In sum, then, Donald and Charles, working just a few doors from one another, config-
ure an AI science that cancels out the reality of their neighbor’s work. In a single CS 
department, we find a proliferation of real AI. Donald uses a distinction between basic 
and applied that echoes the broad outlines of Vannevar Bush’s science policy. Charles 
has a more problematic relationship with this traditional boundary. In his view, the 
boundary between basic and applied is not so much illusory as counterproductive. He 
sees ‘real AI’ in technologies that unite societal impact with scientific insight. Neither 
version of ‘real AI’ is determinative. There is no stable, universally identifiable referent 
to adjudicate these contrasting ontological claims. Instead, the boundary is positioned 
and repositioned, assumed and problematized, rendered and re-rendered, as a matter of 
course. In the sections that follow, I describe the three repertoires that produced basic and 
applied knowledge at these two labs.

Partitioning
A partitioning repertoire clearly separates basic from applied knowledge according to 
some mutually exclusive tendency within each. Basic research is rendered, by definition, 
as different from applied research, and science, in this conception, should be organized 
to reflect their distinctive features. This repertoire makes basic science sequentially prior 
to, and/or more fundamental for scientific understanding than, applied science. This is 
the repertoire, then, that undergirds the substantive position within a ‘strong form’ of the 
linear model of innovation (Balconi et al., 2010: 5; Godin, 2006), although this too takes 
a wide array of forms across settings and projects. The repertoire usually involves an 
implicit line separating knowledge-for-its-own-sake and knowledge-for-use, although 
not necessarily. The key feature is that the entities are defined in juxtaposition. For exam-
ple, if basic research is focused on discovering how a poorly understood entity is organ-
ized, then applied research will involve putting the entity to work within an application. 
Or, if basic science is unfettered by concerns for profitability, then applied science 
focuses on commercializing discoveries. This provides enough of a definition to move 
ahead empirically, since I am not trying to deduce these repertoires in the abstract but 
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rather to induce the patterns within which the basic–applied boundary gets orchestrated 
in rhetoric and practice.

Partitioning was the primary repertoire deployed at the DRG. The DRG placed clear 
priority on doing research that resulted in scholarly publication, which was seen as the 
primary indication of scientific knowledge production. Building a technology that could 
be applied outside the lab was a legitimate goal, but decidedly secondary. Basic research 
could be conducted without creating an application or usable technology. The DRG’s 
partitioning repertoire was typically conveyed in an informal fashion. It was something 
that novices within the lab were taught and that required periodic reinforcement. This 
involved three main lessons. First, the repertoire hinged on the development of an inter-
subjective understanding that basic science is qualitatively distinct from knowledge-for-
use (note that what basic science ‘is’ at the DRG was never defined and was, in fact, of 
little relevance). Second, basic science was to be kept methodologically separate from 
application and with priority accorded to the former. Third, proper sequencing of discov-
ery, design, implementation, and measurement was the key to a successfully executed 
partitioning repertoire. In the examples below, I first discuss a DRG project that success-
fully partitioned basic from applied research and then a project that was not successful. 
These achievements are based on local sensemaking, not a scorecard or other objectified 
measure of success. Each project yielded academic publications, presentations, and the 
like. However, DRG members discussed the first as a routine culmination of their work, 
and the second was treated as a cautionary tale of insufficient partitioning. Last, I discuss 
the main way that the partitioning repertoire played out at the CML.

The DRG’s head, Derek, frequently stressed the importance of separating, prioritiz-
ing, and timing the stages of project development. Consider how he aligned the members 
on his Cognitive Associates project6 around the staging of performance ‘metrics’. Derek 
sent out the following memo just before a project meeting:

DARPA wants metrics, not adjectives. And, in fact, we want numbers too – that’s the sort of 
hard-fact details that leads to publishable papers, something we haven’t been doing enough of. 
The subjective nature of many DARPA evaluations leads to less plausible numbers … bringing 
in experts to do the evaluation is a time-consuming and expensive process. I believe we can get 
a reasonably objective scoring system in place that will provide a more robust scheme than 
usually found. (email)

Derek is confident that DARPA’s demand for ‘hard-fact details’ can coexist with his 
lab’s desire to produce scientific publications. However, he emphasized the need to 
limit (not eliminate) external intrusions on their lab work. He worried that if DARPA 
brought in outside experts,7 they might muddy their evaluation of the AI system’s per-
formance with subjective impressions of his lab member’s performance during the dem-
onstration. Derek wanted to preempt this uncertainty by developing a plan to measure 
system performance that DARPA representatives would right away recognize as valid. 
Derek called for a ‘reasonably objective scoring system’ – being too pragmatic to call 
for an unassailable one. At the project meeting that followed, Derek went over the goals 
of Cognitive Associates. He stressed that pleasing funders and doing good research are 
distinct activities:
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We will not divert to doing demo-specific code. Okay? Those are evil activities … it destroys 
your soul in the long run. [GROUP LAUGHTER] And in the short run it leaves you with a pile 
of bailing wire and bullshit code.

Despite this skeptical attitude toward pleasing outsiders, Derek noted that since ‘nobody 
has done something like this, [the DRG, university, users, and DARPA] … will all ben-
efit’ (field note).

Parker and Crona (2012) suggest that such imbroglios try to be ‘all things to all peo-
ple’, but rarely do they do so all at the same time. Derek repeatedly emphasized the tim-
ing and staging of research practice: ‘We won’t talk about metrics right now because 
metrics is something you do once you have the system up and running. We are not run-
ning yet so we won’t measure it’ (field note). A proper scientific problem, according to 
Derek, was one that did not have a readily available answer. Measuring performance too 
early could ensure failure by limiting the scope of the research problem. Derek simulta-
neously worried that measuring system performance too late might create the appearance 
that the team had ‘baked in’ positive results (interview). That is, for an AI system to be 
credible it needs proof that it performed an intelligent act, not simply executed a mechan-
ical rule. The longer one waits to test the system’s performance, the more opportunities 
there will be to ‘program in’ the answers.

Less than a year later, Derek decided the time was ripe to test the system’s capabili-
ties. The scheme involved entering graphical representations or ‘glyphs’ of questions 
from the Bennett Mechanical Comprehension Test (BMCT), a standardized aptitude test 
for human engineers. The procedure involved entering known problems and solutions 
into a knowledge base, commonly referred to as a ‘KB’, both as glyphs and as formal 
queries, as shown in Figure 1 from a DRG publication.

The Associate system relied on the DRG’s core analogy algorithm to search its knowl-
edge base for a known solution to a problem that involves three specified ‘base objects’: 
a person, a rope, and a pole. Once retrieved, the known solution is mapped to a ‘framing 
analogy’ by the system’s ‘reasoner’. Armed with this analogy, it offers the ‘suggestion’ 
that ‘pole length predicts balance’. The system churns through the following deductions 
to accomplish this:

Cognitive Associates makes an analogy from Acrobat A (the base) to Acrobat B (the target) … 
The system compares Acrobat A’s Pole-Length with Acrobat B’s Pole-Length, given by the 
framing analogy … the system answers that the stability has increased from A to B. The system 
responds to the query by returning the correct answer: (solveDQProblem BMCT-S-17-MEK 
Object-1297 Object-1298 ((QPQuantityFn Stability) Object-1297) IncreasedDQ) (paraphrased 
DRG paper)

In practice, this involved ‘training’8 an Associate on solutions to questions likely to 
appear on a BMCT test. Once the knowledge base included several solutions, Derek told 
his lab he would use a ‘surprise test, Form T, that … [he hadn’t] looked at. It … [was] in 
a drawer in … [his] office’. Form T was a subset of BMCT questions that no one had 
seen (not even Derek). These tersely communicated details about Form T created consid-
erable intrigue and anxiety among DRG members.
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In terms of its actual performance, the ‘experimental results’ of the test were decidedly 
mixed. The system took the Form T exam several times with several different individuals 
entering glyphs. It was only with the lab members who had considerable familiarity with 
the glyph entry system that the Cognitive Associates system produced correct answers on 
70 percent of the test questions. (Although this was never discussed at the lab, it suggests 
that a key predictor of success was how well the technical interface had ‘trained’ the 
human knowledge enterer). These seemingly modest results did provide data good enough 
for several conference and journal publications. Moreover, the Associates system and its 
results were considered a success at the DRG. Results may have been limited, but research 
goals were appropriately prioritized, the methodology enabled the team to write up the 
results in an experimentalist idiom, and the papers were published in well-known AI and 
Cognitive Science venues that DRG members considered purveyors of real AI. Perhaps 
just as importantly, the modest results enabled the team to express confidence in the sys-
tem’s promise: ‘Our goal is to expand [Cognitive Associate’s] capabilities via instruction 
to include the entire BMCT. It would be ground-breaking in qualitative and common 
sense reasoning to perform at an expert level on such an exam’ (paraphrased DRG 
publication).

Despite Derek’s optimism, ferreting out knowledge production from utility was a 
routine challenge, and not every DRG project was considered a success. Consider Tutor 
Model, an NSF-funded project that simulated a tutor for formal modeling of causal rela-
tionships. Deborah, a DRG graduate student, had primary responsibility for the system’s 
design and implementation. In a conference proceeding, she described the system’s goal: 
‘thinking through causal links within a scenario (e.g., the microwave heats. Heating 
makes the water’s heat increase, which causes its temperature to rise) is a central task for 
[middle school students]’ (paraphrased). The design of Tutor Model involved an attempt 
to teach middle-school students how to re-represent such causal chains in formal lan-
guage. At a presentation on her progress, staff researcher Donald expressed significant 
worries about the project’s configuration:

Figure 1. A DRG Analogy Test.
(This Figure) shows a problem from the BMCT sketched in our system. The question, ‘Which acro-
bat will find it easier to keep her balance? (If equal, mark C)’, was translated into the following query: 
(solveDQProblem BMCT-S-17-MEK Object-1297 Object-1298 ((QPQuantityFn Stability) Object- 1297) 
?value)).
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Donald scratches his head and says, ‘There are a lot of confounds here. Who is the target 
audience for this research? Is it meant to be a teaching tool? Or a way to enhance student 
learning? Or is it meant to address a set of questions that researchers in education or design 
have? The questions about the scaffolding seem confounded with all this. Is it just about 
design?’ After a short pause, lab head Derek responds, ‘Well, the teachers are not the objects’. 
Donald suggests that designing an interface is distinct from teaching a substantive domain that 
middle-school students know little about. Derek is getting impatient with Donald’s line of 
questioning: ‘Well, guess what, it turns out they are not. You have to do both’. Donald asks, 
‘But what have the students learned here? If you take the software away from them, can they 
write the sentences in the correct way?’ Instead of responding to this question, Derek jokes that 
at least Deborah did not make a ‘happy video’ with children pretending to have fun. Deborah 
demurs, ‘Your criticisms are legitimate Donald. It’s true that a lot of different agendas have 
gone into this project’. (field note)

Derek blamed the difficulties of Tutor Model on two issues related to partitioning of the 
basic and applied boundary. First, there were a series of limitations imposed by the Java 
script used to program the user interface. Derek felt that the interface was a superficial 
aspect of the technology design, but it was one that was compromising their scientific 
progress. Second, the system had been implemented at the ‘lower end schools’ and the 
‘rattier schools’ in the public school system. Derek pointed out that these problems ‘had 
nothing to do with the intellectual interests of our lab’. In short, the context of use had 
become confused with the lab’s ability to produce universal knowledge. Tutor Model 
was not only an example of basic researchers wishing to ignore the messiness of imple-
mentation. It was also an example of the priorities and problems of the implementation 
environment getting ‘confounded’ with the priorities and problems of DRG science. 
That is, it was a DRG project that had insufficiently partitioned basic from applied 
emphases.

After the meeting, Deborah told me that she appreciated Donald’s criticisms but found 
it difficult to talk about them with the head of the DRG, Derek, present. Deborah had 
long felt that the system would be compromised unless they could convince the teachers 
and students to recognize its benefits to them. Deborah felt that by blaming the Java 
script and dismissing the internal dynamics of the classroom, Derek could avoid seri-
ously interrogating the assumptions of his research program. Deborah noted in an inter-
view that

The intellectual issues in the way [Derek] sees them, and the way I thought about them 
originally, is modeling for reuse and transfer. It is a beautiful idea - that if you give somebody 
a general purpose modeling formalism that is adaptable to multiple situations, are they more 
likely to recognize an analogy? Are they more likely to make big models out of small models? 
Can we design this toolkit so that they can use modeling for reuse? (interview)

Deborah had little success getting Derek to see that schools with large numbers of poor 
and working class minority students might actually strengthen the science of Tutor Model. 
After all, she reasoned, this might represent a ‘hard case’ instead of a ‘distraction’. 
Deborah lamented that ‘[for Derek] the reality of the classroom is not a real thing’. What 
is real for Derek, she believed, are the universal correlates of human-level intelligence 
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– how any thinking agent uses analogy. In this way, Derek’s conception of ‘real AI’ was 
too basic for this NSF grant, with basic defined here in terms of universalism. The NSF 
was too applied, seeking technologies that could measurably improve student learning in 
specific settings.

Tutor Model was troublesome for the DRG not because it involved a complicated 
implementation environment, per se, but because its methodological design blurred 
together too many distal realities: an academic AI lab focused on universal knowledge, 
resource-deprived public school classrooms, poor neighborhoods with little computing 
infrastructure and poorly prepared students, well-intentioned but harried teaching staff, 
and a government agency looking for clear measurements of student learning. In a casual 
conversation, Deborah pointed out that ‘a lot of [the DRG’s] systems have been applied 
in places like engineering schools, where it is much more about content delivery. This is 
a far more ambitious project’. Deborah finished her dissertation as a collection of sepa-
rate papers. Several were published in AI and educational research conference proceed-
ings and one in the flagship magazine of the field. Despite these objective successes, 
Tutor Model was abandoned and its main impact on subsequent DRG projects was as a 
cautionary tale about the perils of insufficient partitioning.

Unlike the preceding examples from the DRG, the CML usually deconstructed the 
traditional distinction between basic and applied knowledge. However, the CML did use 
a partitioning repertoire to manage some of the most financially and legally risky issues 
of academic capitalism. This was the role of TransferLab, an on-campus incubator for 
computer systems identified as possessing market potential. Consider how this intersti-
tial unit was used for the development of a CML system named Follow Up. CML gradu-
ate student Curt had developed Follow Up as a recommendation system for a university 
library. In publications, CML members referred to it as an ‘automated library research 
assistant’. Follow Up compiles the information available to the library computer system 
when a user checks out a book, such as location, item history, and user history, to auto-
matically compile additional resources relevant to the (presumed) user’s task. In princi-
ple, programmers could build ‘wrappers’ for Follow Up to provide a similar function for 
any number of other location-based services. CML head Charles frequently highlighted 
Follow Up as a CML system with strong commercial potential. The following transpired 
at a demonstration of Follow Up to representatives of a telecommunications firm:

One of the visitors asks what it would entail if he wanted to use Follow Up at her firm. Lab head 
Charles replies that their lab is ‘in the midst of licensing this technology for a start-up’. John, a 
university administrator escorting the guests, asks Charles, ‘This technology hasn’t officially 
moved to the TransferLab, right?’ Charles replies, ‘Not yet, but soon’. The visitor is confused. 
John explains, ‘The TransferLab is an internal incubator within the University. It provides a 
new model for doing academic research’. Another visitor asks if the TransferLab has for-profit 
status. Charles replies that it does not since it is part of the university. Charles states that when 
academic technology gets commercialized it is sometimes cut out of its research phase too 
quickly. The TransferLab provides a place where ‘transfer’ can occur without removing the 
project from the ‘discovery phase’ too soon. This way, adds Charles, ‘Curt doesn’t have to stop 
being a graduate student and I don’t have to stop being a professor. It’s a powerful model for 
this kind of research’. (field note)
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Boundary organizations like the TransferLab cleave commercial concerns from scien-
tific ones by moving them to a separate unit within the university ecology, similar to how 
an industrial firm might separate marketing from production. Here, again, the physical 
separation of space proved salient. The TransferLab involved a formally separate staff 
working in a separate location from the CML (at a ‘research park’ adjacent to campus). 
The TransferLab employed a full-time CEO, an administrative assistant, a Director of 
Research, two research assistants, and several independent programmers. Prototypes had 
separate development budgets from the lab funds used in their initial development at the 
CML. If a technology was thought to be patentable, TransferLab staff handled the patent 
procedures. If a technology looked as though it could move to market quickly, the 
TransferLab handled the marketing and product design phases. This separation served 
symbolic, legal, and financial rationales as much as personnel ones, since both RAs were 
graduate students in the CML (one was Curt) and the Director of Research was Charles. 
However, their time and work at the TransferLab were formally independent from their 
role within the lab and the Computer Science Department. Rather than allow the meth-
odological, legal, and financial pressures of his dissertation research and commercial 
product development to completely blur, the TransferLab provided a ‘trading zone’ 
(Galison, 1996) for managing tensions between scientific knowledge production and 
commercialization. Boundary organizations like this buffer doctoral students like Curt 
from direct pressures to produce an immediately saleable product. They are an organiza-
tional instantiation of the partitioning repertoire.

Flipping
The CML employed two additional repertoires for rendering basic and applied knowl-
edge that were not in circulation at the DRG. Both problematize the boundary between 
basic and applied but in different ways. The first, flipping, hinged on an inversion of the 
traditional hierarchy of basic science as knowledge-for-its-own sake and applied science 
as knowledge-for-use. ‘Real science’ is grounded in the latter, no longer the former. The 
flipping repertoire does more than simply state a preference for one style of research over 
another (although it does this too). It is more thoroughgoing by calling for a broad 
rethinking of what ought to count as good science and how to reorganize scientific prac-
tice to reflect that rethinking. Flipping reverses the sequential and causal assumptions of 
the linear model of innovation. Knowledge-for-use becomes prior and more important. 
In this way, the flipping repertoire involves the heterogeneous linkages needed to create 
what Nowotny (1993) famously referred to as ‘socially distributed knowledge’. Canonical 
theory, disciplinary problem choices, and academic freedom to explore are re-conceived 
as insular, parochial, out-of-touch, and impotent. Scientific knowledge produced in con-
texts of use, in turn, is outward-looking, cosmopolitan, current, and impactful.

Both Charles and his lab co-director, Cliff, spent large portions of their days maintain-
ing relations with corporate firms such as Accenture, Diamond Cluster International, 
General Motors, Honeywell, Northrup Grumman, and SBC Ameritech. Both engaged in 
consulting for these firms, and Charles even served as a technology advisor for the may-
or’s office of the large city in which university is located. In addition to these industry 
and government ties, both men cultivated links with venture capitalists and a vibrant 

 by guest on April 16, 2015sss.sagepub.comDownloaded from 

http://sss.sagepub.com/


258 Social Studies of Science 45(2)

regional arts and entertainment industry. Neither Charles nor Cliff expressed concerns 
that their scientific practice or the knowledge they produced was getting coopted in this 
knowledge capitalization process. Instead, they tried to evince the synergistic energy 
found in the ‘About’ tab of their lab’s website: ‘We are always in flux. Our members are 
the basis of an atmosphere where students, guests and business partners flow through our 
halls. Together, we create an exciting culture of innovation and impact’ (paraphrased). 
With the themes of flux, flow, and excitement, the CML sought to distance itself from the 
image of a sterile lab environment. Faculty and staff provide a foundation; ‘industry 
partners’, among others, do not distract from knowledge production but enable it. Here, 
what Pickering (1984) described as ‘opportunism in context’ is deployed as an explicit 
strategy for inverting the implicit hierarchy in the traditional basic–applied boundary.

As mentioned earlier, CML members were highly critical of what several members 
referred to as ‘traditional AI’. Their criticisms could be snide and rhetorically savvy, but 
more importantly they suggested that contexts of use provide a superior launching point 
for AI science than canonical theory. Consider the following discussion between lab head 
Charles, co-director Cliff, and a few graduate students about a recent conference they 
had attended. The topic shifts from a discussion of various lab demonstrations to a more 
general critique of obscurantism in intellectual life:

Charles comments, ‘One of the funniest things that has happened to us is that we’ll get responses 
to proposals that are like, “This is really applied. You just want to apply stuff you’ve already 
done,” and so forth. But our proposals are way out of control conceptual. But then we say we 
think we can do it and base it on this actual technology that we built. It just irritates the hell out of 
people. I’ve been thinking about our history of proposals over the last four years. Great proposals. 
Filled with high concepts and sort of strange, crazy places to go and we’ve also combined that 
with this sense of certainty that we can do it. And so people are like, “No, no we want high risk.”’ 
Cliff suggests, ‘I think that what people confuse is the risk mitigation and the research strategy 
versus whether the actual end result is a risky thing’ and then adds, sarcastically, ‘We should 
throw in more equations’. Laughing, graduate student Cyrus offers, ‘Put the word regression in 
there’. Charles then summarized, ‘When we talk to other people in totally different fields it turns 
out that this is an actual, honest to God ubiquitous problem in the intellectual life of this country. 
It really is that being unintelligible is synonymous with doing good work’.

Charles, Cliff, and Cyrus are not merely complaining about the rhetoric of basic and 
applied science in AI (although clearly they are doing this). Their criticism runs deeper. 
Charles attempts to articulate what is singular about CML research practice. He notes 
that too often, academic research confuses ‘high concepts’ and exploration with ‘doing 
good work’. His criticism suggests that CML research practice involves the creation of 
‘actual technology’ that will reliably work. This requires the active building and main-
taining of linkages with interested ‘partners’ outside of the academy. If the technology is 
‘brittle’ (i.e. only functions properly in a tightly constrained environment), Charles points 
out, then it is very likely that the concepts it is based upon are flawed. Their discussion 
suggests that the traditional hierarchy between basic and applied science in AI, as well as 
in ‘totally different fields’, renders a bias toward substantively empty concepts with little 
explanatory power and no practical impact. This is a call to reorganize scientific practice 
in word and deed.
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Despite CML member’s opposition to what they describe as ‘mainstream AI’, there 
is an institutional basis for this style of research within academic AI. For example, tak-
ing stock of disciplinary progress over the last 40 years, an editorial survey in the flag-
ship journal Artificial Intelligence noted that many scientific advances emerged from 
‘real-world’ applications: ‘These are not systems working alone – they must take into 
account the people with whom they are working – modifying their behavior to fit human 
constraints and goals, as well as the complexities of the physical world’ (Bobrow and 
Brady, 1998: 1–2). Similarly, the CML’s flipping repertoire echoes the critique of top-
down computer design launched in the field of informatics. Here, good computer design 
is measured by the extent to which a system meets user requirements (Jelsma, 2003; 
Oudshoorn and Pinch, 2003). Advocates of this design philosophy position themselves 
as political representatives of users by deploying a ‘liberal, humanist, and antitechnicist 
rhetoric’ (Cooper and Bowers, 1995: 51) and have developed a number of conferences 
and publications that reflect this orientation. Echoing a theme prevalent within ‘ubiqui-
tous computing’, CML members argued that the optimal state of the machine–human 
relationship is to ‘reduce friction’ and bring users information ‘just in time’. Charles 
liked to toy with the unease some CML visitors might have with the surveillance poten-
tial of proactive search by repeating a lab mantra, ‘No matter where you are, no matter 
what you’re doing, no matter what you’re thinking, we will get you the information you 
need … and it turns out that we can figure out what you’re thinking’ (field note).

Science labs commonly calibrate their research practice and standards of success with 
those they consider peers (Knorr Cetina, 1999; Traweek, 1988). The nature of these com-
parisons differed between the DRG and the CML in a revealing way. At the DRG, com-
parisons focused on how the lab’s research on analogical reasoning fits into a division of 
labor among other labs in AI and the experimental cognitive sciences. CML members, in 
contrast, considered the combination of their methodological approach and unique esprit 
de corps as the source of their innovative research. That is, CML members focused not 
on their place among peer labs but on their superiority to them. The flipping repertoire 
contributed to this spirit of competition. Consider how lab head Charles described the 
typical CML research process:

‘Let’s build the thing. Let’s make it work!’… Rather than, ‘Let’s hallucinate what the answer is 
and … then build scaffolding to make sure that is the answer’. We’re totally agnostic on how 
we make things work. We’ll just make them work. It’s an empirical science … We’re letting the 
practice precede the theory because we think that that’s the way computer science should be 
done … For practice not to precede theory … is like ignoring the physical world in the early 
days of physics. (interview)

Several members of the CML shared similar sentiments with me. Too often, they rea-
soned, AI science begins with an answer and then ‘bootstraps’ the problem rather than 
starting with a ‘real-world’ problem. Just as a staff researcher at the DRG, Donald, com-
pared his lab’s science favorably to the CML’s, members of the CML often characterized 
their science in contrast to that of the DRG. Charles considered the DRG an example of 
an outmoded tradition in AI that, like expert systems in the 1980s, relies on massive 
knowledge elicitation to create uninspiring results. He stated casually that this might be 
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‘wonky science but there is nothing real in it’. Charles once got a lot of laughter at an 
informal CML lunch when he boasted, ‘Give me a week and I’d have [DRG] systems 
actually working’. Graduate student Charvik took a similar jab at their next door neigh-
bor: ‘[The DRG] is in the same tradition as a lot of AI research over the past half century. 
The government invests big money so a robot can pick up a can of Coke’.

Collapsing
The last repertoire I observed involved collapsing the entire distinction between basic 
and applied knowledge. This repertoire looks quite a bit like Stokes’ (1997) concept of 
‘Pasteur’s Quadrant’, in which ‘use-inspired basic research’ involves both a quest for 
understanding and considerations of use. There is, however, an important difference. 
Stokes formulates a stable orientation at the conjunction of two continuous variables. His 
classificatory scheme therefore lends itself to the tendency that Norbert Elias referred to 
as zustandreduktion or the reduction of process to a static condition (Elias, 1978: 112; 
Elias, 1998: fn 88, p. 45). A multiple ontology framework can avoid placing knowledge 
into stable categories. Rather, it watches how knowledge is positioned as such. Reality is 
in the relation, not the essence of the object.

Capturing a repertoire in analysis that is oriented to ontic collapse is a difficult empiri-
cal challenge. This is because the repertoire produces the erasure of the very category 
one seeks to follow (much like pragmatist metaphysics). However, the activity can be 
followed if we notice that the collapse is justified with an appeal to an irreducible though 
ineffable whole.9 This is best demonstrated through an example. Consider how CML 
head Charles reflected on the skills he looks for in new recruits:

We tend to like students who have more of a liberal arts education. Who are grounded in the 
world as opposed to grounded in computer science. Because the technical skills are important. 
I mean they are crucial. But being able to look at the world in certain kinds of ways is far more 
important. That’s hard to learn. An orientation around people and what they do and how they 
do it is what you need. If you don’t have that, if you have no instincts in that area whatsoever, 
what you end up doing is working on technical problems that have little to do with anything. It 
astounds me. The field is rife with that.

Charles is quick to distance his lab from the stereotypical image of the computer scien-
tists: loners and geeks who feel more comfortable expressing themselves in programming 
code than within human interaction. He suggests that his members have an irreducibly 
tacit ‘feel’ for assessing what people need in their computer-mediated lives. What I find 
most interesting in Charles’s quote is how ‘instinct’ serves to shut down further explana-
tion (Bateson, 2000 [1972]: 38–58). In doing this, Charles positions CML research at the 
collapse of several common distinctions in forms of knowledge: the explicit with the tacit, 
the formal with the informal, the ambiguous with the precise, and basic with applied.

This odd coupling of an antipathy toward universals yet grounding in an ineffable 
whole could lead to confusion around where to place CML research projects. Consider 
the demonstrations of Sleuth10 and Follow Up for Northrup Grumman, a military 
contractor:
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The Northrup Grumman representative asks if Sleuth is finished. Graduate student Cole [whose 
dissertation was based on Sleuth] replies that it is never finished in the same way that a lot of 
traditional AI projects get finished. He states, ‘We don’t build end-user programs … [until they 
are] out in the world … For us, the theory comes after the deployment’. Graduate student Curt, 
who assists Cole on Sleuth, adds, ‘We could theorize all day. But really we want to get things 
started and out there in order to then theorize how it gets used’.

Cole’s conviction that ‘the theory comes after the deployment’ and Curt’s comment that 
‘we could theorize all day’ distance the CML from traditional AI research. Research that 
precedes deployment is cast as easy yet brittle. Sound theorizing for CML members is 
not decontextualized pontification but contextualized inquiry. Later, another company 
representative asked, with considerable confusion:

‘So do you use Artificial Intelligence?’ After a short silence, Cole replies, ‘That’s a loaded 
question!’ Other members of the CML chuckle knowingly at one another, which I reflexively 
join so as not to feel on the outside of an inside joke. Cole continues, ‘We use AI as a toolbox. 
We use it in the system to go out and see how the system is used in the real world. The theory 
of our research comes from seeing the system deployed. Through deployment we learn how it 
gets used and how it can change’.

When collapsing the distinction between theory and practice, CML members did not 
distinguish between discovery and use. Design, deployment, and inquiry are all col-
lapsed into Cole’s conceptualization of the ‘theory of our research’. In this sense, an 
evolving analysis of the precise ‘implementation environment’ is understood to be inte-
gral to the iterative design of an AI system and to the knowledge claims that are made 
with that design.

Departing from his sometimes sardonic tone, CML lab head Charles discussed the 
collapsing repertoire he practiced in highly idealized terms. Consider how he contrasted 
his doctoral training with his current research practice during an interview:

Cliff and I were both trained in AI in a particular point of view. That was case-based reasoning, 
or reasoning from memory. Reasoning from experience … We had a religion just like everybody 
else has their religion, and then at one point we decided we were going to lose religion in order 
to find God. And God is things that work. And we use all sorts of technology and all sorts of 
ideas and all sorts of approaches in our work … And that actually meant a lot to our lab. It 
changed us.

Despite his explicit disavowal of religiosity toward any particular AI technique, Charles 
evoked an evangelical zeal for eclectic research practice. Like his graduate students Curt 
and Cole, he sees in a collapsed boundary between basic and applied a more real AI 
science.

Conclusion
This article demonstrates that the reality of basic and applied knowledge is made within 
practical action. Treating forms of knowledge in this way suggests that scientific objects 
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are rendered rather than discovered. This does not mean that scientists can make any 
reality they dream up with a bit of savvy rhetoric. The work that goes into making scien-
tific objects factually real is simultaneously epistemological and political (Mol, 2002). It 
includes regular re-articulations of epistemic identity, research planning, comparisons to 
peer labs, ‘good enough’ metrics of proof and evaluation, attempts to convince interlocu-
tors that your science is worth funding, and, of course, long days and sometimes sleep-
less nights filled with hacking and debugging. This array of practices, and much more, is 
mobilized to fortify some objects while weakening others. As Wittgenstein (1969) put it, 
‘knowledge is in the end based on acknowledgement’ (p. 378).

The DRG used a partitioning repertoire to separate basic and applied parts of their 
science in order to maintain a priority on the former while still building systems that 
might, some day, be adapted to use. Their claims for producing basic scientific knowl-
edge were grounded in an experimentalist idiom of empirical proof, like passing the 
BMCT, whereas applications of their research were typically left promissory. The CML 
deployed a version of a partitioning repertoire too, but mostly deployed two other reper-
toires aimed at deconstructing the traditional boundary altogether. Sometimes they 
flipped the boundary to indicate that prioritizing the use-context generates better scien-
tific insights than do the insular practices associated with basic research. Other times, 
they collapsed the distinction altogether, seemingly borrowing a page from some histo-
rians who have suggested the boundary is little more than the antiquated propaganda of 
policy advisors like Vannevar Bush and John Tyndall.

In one sense, my analysis suggests that these AI scientists are similar to research 
policy analysts themselves, seeking to identify the limits and empirical basis for the 
categories of basic and applied knowledge. There is, however, an important difference. 
The repertoires never came in tightly packaged and carefully scoped definitions of the 
essential characteristics of scientific knowledge. Such determinism was of little use at 
either lab. The CML, in fact, deployed all three repertoires despite the fact that each one 
cancels the reality of the other two out. We might conclude, from a perspectival posi-
tion, that members of the CML were deluded. Or, with multiple ontology, we can see 
that the repertoires served as epistemic tools for directing ongoing technoscientific 
entanglements.

Even in the partitioning repertoire, which was the closest approximation I found to the 
‘linear model of innovation’, I did not observe a sequence of activities that map directly 
onto this model. Even before a research project was underway, lab head Derek and his 
members anchored their design within at least a vague imaginary of the potential user 
base. However, members of the DRG did draw on a hard-edged distinction in which 
basic knowledge is prior to and more important than applied knowledge. This helped 
them orchestrate, prioritize, and execute their research plans. In other words, it does not 
much matter that the ‘linear model’ is a flawed way to understand actual research prac-
tice (Balconi et al., 2010; Edgerton, 2004) since it sets out boundary conditions that are 
used to affirm epistemic identity and strategize moves within a research field (Hounshell, 
2004). Such a model of scientific work is neither fully substantive, in the sense of reflect-
ing a singular reality of how science gets done, nor is it mere artifice, in the sense of 
being merely a rhetorical flourish or ideological perspective. The model has substantive 
and artifactual features in its daily enactments. It has a real form of life, but a form 
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tweaked within particular configurations of technoscience rather than turned out as if 
from a Jell-O mold.

Scientific practice is not unpredictable so much as processual. Some parts of a con-
figuration will have more influence over the basic–applied boundary than others. Lab 
heads have the greatest strength in determining the parameters of their group’s entangle-
ments (which is not to suggest lab heads are Übermenschen but that they are made 
accountable). Furthermore, as legal scholars have pointed out, repeat players more easily 
impose expectations than do one-shotters in complex systems (e.g. Berrey et al., 2012). 
The DRG is far more dependent on DARPA for resources than the agency is in need of 
DRG systems. As such, DARPA is a fairly intransigent force in what counts as basic and 
applied. DRG staff researcher Donald failed to convince DARPA that his Air Force pro-
ject was basic enough and so development ceased. Likewise, Deborah’s Tutor Model 
failed to convince senior members of the DRG that she had sufficiently separated the 
basic and applied parts of her research. The DRG had thin ties of little internal conse-
quence with inner city schools and found that particular implementation environment too 
messy and distracting. Charles, Cliff, and their CML members struggled, in contrast, to 
shift what counts as good science from abstract theory to workable systems. They have, 
however, carved out enough of a niche within their professional field that they can keep 
this version of AI science going. These two very different realities coexist right next door 
to one another. They sometimes mingle, particularly when members of the two labs draw 
direct comparisons to one another. Each version of the boundary cancels the other two 
out, yet on they go. A fruitful arena for further research is single research projects that 
combine multiple realities of basic and applied research within them, such as inter-lab 
collaborations, as well as transdisciplinary projects that cobble together quite different 
ontic activities.

There is no simple way to adjudicate the question, ‘What is basic and applied sci-
ence?’ The answer cannot be deduced by better specifying the substantive or the arti-
factual elements of the boundary. Doing so, as numerous research policy analysts have 
with concepts like ‘Mode II science’, ‘translational research’, ‘socially distributed 
knowledge’, or ‘use-inspired basic research’, merely carries forth the ongoing activity 
of partitioning, flipping, or collapsing the basic–applied boundary. Adding new cate-
gories provides new objects to be manipulated. However, in this desire to distill, we 
tend to lose sight of the fact that there is no God to separate, once and for all, the pure 
from the contaminated, the primary from the secondary, or the basic from the applied. 
There are, however, devilishly rich answers to this question in the details, way down 
in the muck of it all.
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Notes
 1. This does some disservice to the diverse treatments of the basic–applied distinction. For 

example, research policy analysts like Henry Etzkowitz and his colleagues vacillate between 
substantive and artifactual positions (not unlike the AI scientists studied below). Abstractions 
are necessarily simplifications of wholes, and this one is useful for drawing out the ontologies 
embedded within categorical distinctions of science.

 2. The term repertoire comes from Nigel Gilbert and Michael Mulkay’s (1982, 1984) work on 
the discursive strategies that biochemists draw upon to warrant their views of acceptable 
and unacceptable research findings. A repertoire is a stock of skills, moves, and routines 
that an actor or a group of actors is prepared to perform within a particular scenario. Gilbert 
and Mulkay’s empirical analysis of repertoires is almost entirely discursive. Mine combines 
discourse with practice, treating their relation as a joint performance. In a recent commentary 
on Patrik Aspers’s (2014) critique of the ontological turn in Science and Technology Studies 
(STS), Sergio Sismondo (in press) formulates multiple ontology as examining how ‘suites 
of connected practices establish ways of being … [a] focus on local stability as a temporary 
narrowing of interests, which sets aside the study of flux and its stabilization precisely to 
establish the ubiquity of ontic activity’. This is a helpful formulation. My use of repertoire 
refers to the stock of discursive moves that articulate, direct, and prioritize ‘suites of con-
nected practices’ for warranting acceptable scientific findings.

 3. The concept of a research ‘border zone’ is based on Peter Galison’s (1996, 1997) notion 
of ‘trading zones’ but differs in emphasis. I am drawing attention to the sensemaking pro-
cesses that separate, reorder, or collapse the distinction between forms of knowledge. Galison 
focuses on how simulation technologies enable cross-domain communication across diverse 
institutional domains.

 4. The names of each lab and their personnel, as well as research projects, are pseudonyms. 
Quotations from published lab papers have been paraphrased for anonymity, which is noted 
within the text. To help the reader track members of each lab, I refer to all Deep Reasoning 
Group (DRG) members with names that begin with D, such as Derek, Donald, and Deborah. I 
refer to all members of the Clever Minds Lab (CML) with names that begin with the letter C, 
as in Charles, Cliff, and Charvik. I use first names only, without formal titles, because in daily 
interaction everyone related on a first name basis, exhibiting the studied informality across 
rank often characteristic of American academic life. However, to signal status differences, I 
introduce each individual as ‘lab head’, ‘staff researcher’, or ‘graduate student’ and provide 
reminders of formal status where relevant.

 5. Comparisons like Donald’s were common at labs’ meetings, in casual conversations, and 
during interviews, but never occurred in shared spaces. This was one of the key ways that 
the relative privacy of lab space was instrumental in the production of each group’s scientific 
work even when one version of AI science dismissed the reality of their neighbor’s version. 
The organization of physical space helped orchestrate ontological pluralism.
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 6. Derek described his Cognitive Associates as building digital analogs to the M*A*S*H char-
acter Radar O’Reilly – nerdy sidekicks who pop up with useful information just when they 
are needed and then go away. The general idea is to create general-purpose digital assistants 
that would steadily add to a ‘learning database’ by monitoring how their human partners make 
decisions.

 7. It is customary that in large-scale Defense Advanced Research Projects Agency (DARPA)–
funded projects, members of the grant oversight office do periodic ‘site visits’ to evaluate 
progress. During my 3 years of observation, the director of DARPA Information Processing 
Techniques Office (IPTO) visited the DRG twice. On both visits, the director spent a day 
viewing system demonstrations at the DRG, a second day giving a talk to the Department, 
and then briefly visited other labs on campus (including the CML). Historically, the 
Director of DARPA IPTO holds a PhD in the field and is an active Artificial Intelligence 
(AI) research scientist. This was true of the Director of IPTO in the mid-2000s, who spent 
much of his career leading an AI research group at a large communications corporation. 
During his tenure at IPTO, this director’s primary initiative was a push for more research on 
‘Cognitive Systems’, which was the stream of funding that supported DRG work. In 2010, 
IPTO was merged with another DARPA office and became the Information Innovation 
Office.

 8. One might think that ‘programming’ and ‘coding’ are the more accurate word choices here. 
However, DRG members did not use these terms to describe computer capacities that they 
considered an example of learning or intelligence. Terms like coding and ‘hacking’ were used 
to refer to rote procedure. ‘Training’ was used for human-level intelligence.

 9. One might note a parallel here with the actor-network theory’s ontological grounding in a 
‘seamless web’ of human and non-human relations.

10. Sleuth involved an attempt to automate information and Internet search by ‘pro-actively’ filter-
ing a computer user’s currently running software applications. It did this by pulling a ‘word 
chunk’ or extract from the corpus of words available to it (Word documents, web browsers, 
recently opened emails, etc.). The chunk excluded ‘stop words’ such as ‘the’, ‘a’, ‘is’, and so 
on. Sleuth seeks out and delivers additional web resources, data, news, videos, blogs, and so 
on, without the user having to come up with search terms on their own. CML members pointed 
out that search terms are the key source of ‘friction’ in current search technology like Google.
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